(4/3)x=44-x^2

Simple and best practice solution for (4/3)x=44-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/3)x=44-x^2 equation:



(4/3)x=44-x^2
We move all terms to the left:
(4/3)x-(44-x^2)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(44-x^2)+(+4/3)x=0
We multiply parentheses
-(44-x^2)+4x^2=0
We get rid of parentheses
x^2+4x^2-44=0
We add all the numbers together, and all the variables
5x^2-44=0
a = 5; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·5·(-44)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{55}}{2*5}=\frac{0-4\sqrt{55}}{10} =-\frac{4\sqrt{55}}{10} =-\frac{2\sqrt{55}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{55}}{2*5}=\frac{0+4\sqrt{55}}{10} =\frac{4\sqrt{55}}{10} =\frac{2\sqrt{55}}{5} $

See similar equations:

| 5x=4=39 | | ( | | x-x/4=26 | | 3x(x+2)=2(2x+7) | | X-x÷4=26 | | (1-3*x)^3=-8 | | 4*5*3=2p | | 6x+(2)/(3)=-(1)/(3) | | 4x-2=`10 | | 6=5+2(2x+6) | | X3-2y=25 | | 1/3=(10x-12)/24 | | 1/2x-1+2/5=2/x-6 | | 303=-19-14r | | 12-3x-2x-2=x+2012 | | 0,634=0,0066x-0,0209 | | 10x-11=7x+12 | | x-258=-516 | | x-56=-21 | | x-149=591 | | x-43=77 | | x=((5.5-4.1375)/5.5)*84592 | | -4x-10=-3x-9 | | x=(5.5-4.1375)/5.5*84592 | | 2x+19=-3x+14 | | 20956=((x-4.1375)/x)*84592 | | 20956=(x-4.1375)/x*84592 | | 3a-3=2a+6 | | 6084-x^2=0 | | 2x-3+5x=7x-3-2x | | 8k+7=6k+17 | | 3x+14-6 x=12-5x |

Equations solver categories